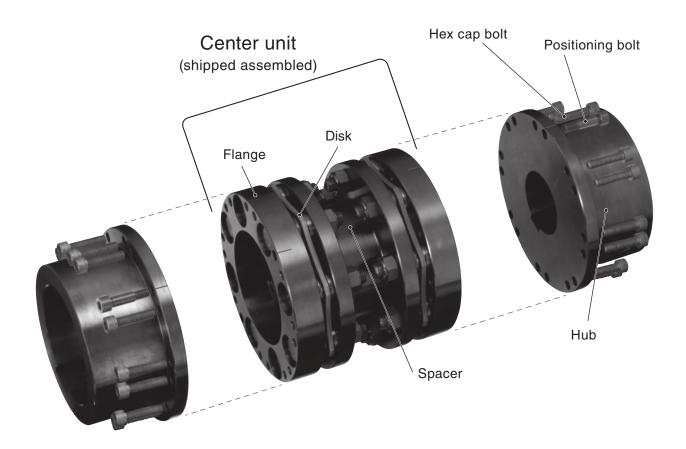
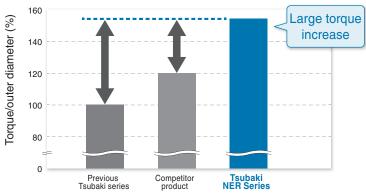
NER Series ECHT-FLEX® Couplings


Designed to provide high capacity, compact size, and easy handling.

New disks and optimized bolts give NER Series ECHT-FLEX Couplings high capacity and smaller size.

The center unit structure greatly reduces mounting time on equipment.


Structure

Features

Large transmission capacity

Greatly increased torque relative to previous series enables smaller sizes.

Comparison of torque for same outer diameter 500 kW at 1,450 rpm selected (service factor ≥ 2.0)

Easy handling

The disks and spacers have been structured as a single unit (center unit), eliminating on-site disk assemble work after centering.

Can be installed/removed just by the bolts between the center unit and hubs.

■ Large bore diameters

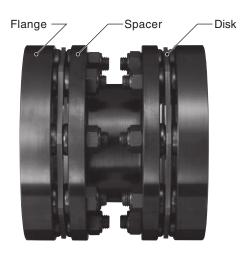
The use of a center unit enables larger maximum bore diameters than other models.

■ Backlash-free, long service life

NER Series models have no backlash and high torsional stiffness, making them ideal for servomotor-based positioning equipment.

No sliding parts, enabling long-term use without lubrication.

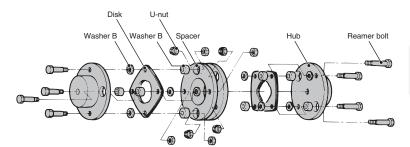
■ Wide range of options


Choose from a wide range of products, including NER with Power-Locks for compact shaft designs, models that meet API610 11th pump standards, and flange-mounting models that can be installed on non-shaft rotating parts.

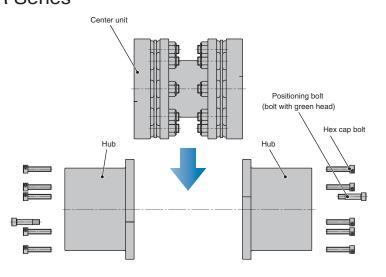
■ Environmentally friendly

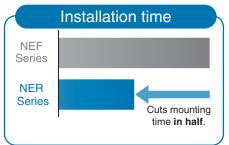
Comply with the regulations on hazardous substances in the RoHS directive.

Features

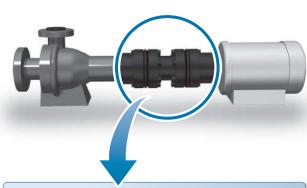

Center unit structure (shipped fully assembled)

NER Series models have a center unit structure with two sets of disks (plate springs) fastened using spacers and flanges on both sides. The structure is shipped from the factory as a assembled unit.

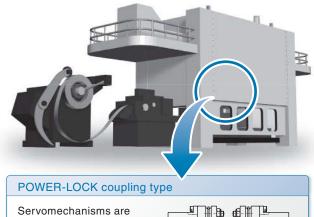

■ Comparison of mounting work for NER Series

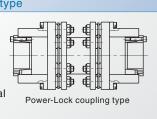

NEF Series

The center unit structure of the NER Series simplifies on-site work.

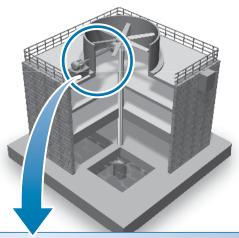

NER Series

Application Examples


Pump

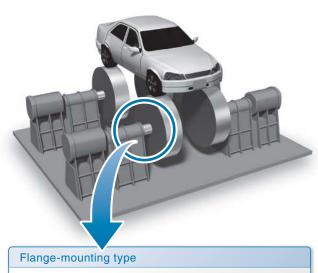

Center unit structure

The coupling can be disconnected by removing the center unit without moving the motor or pump, improving pump maintenance.

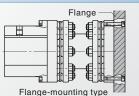

Press

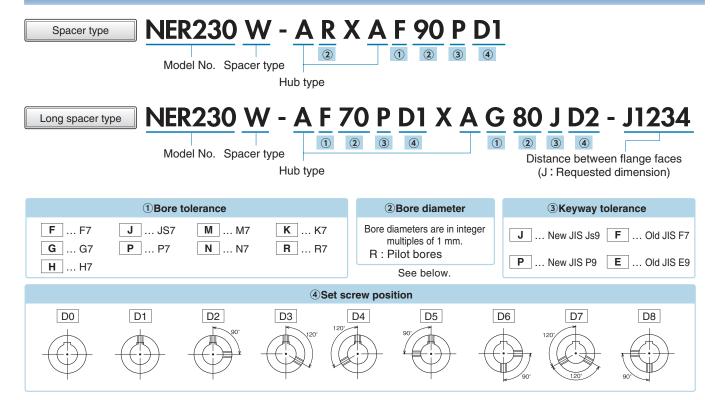
becoming increasingly common in presses, demanding precise positioning. Backlash-free POWER-LOCK are an ideal shaft coupling method for this application.

Cooling tower



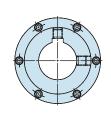
Composite spacer type

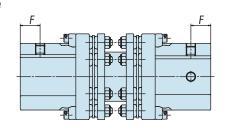

In cooling tower application, a long spacer coupling is used between motor and reducer. CFRP spacer is suitable with such corrosive environment. It is much lighter and better handling than stainless steel type.

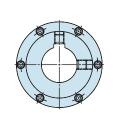

Vehicle tester

When mounted on a part other than a shaft, the hubs can flange for connecting.

Model Number


Standard bore range


Model No.	Keyway bore diameter range (1 mm increments) [mm]
NER59W	φ 25 to φ 65 (φ 61)
NER93W	φ 40 to φ 85 (φ 80)
NER230W	φ 50 to φ 90 (φ 84)

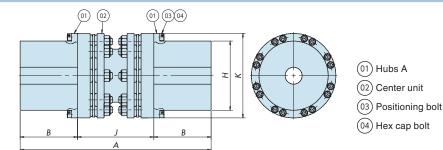

Model No.	Keyway bore diameter range (1 mm increments) [mm]
NER360W	φ 60 to φ 105 (φ 99)
NER630W	φ80 to φ125 (φ119)
NER850W	φ 100 to φ 145 (φ 139)

^{*} Diameters in parentheses are maximum bore diameters with old JIS machining.

Set screw position and size

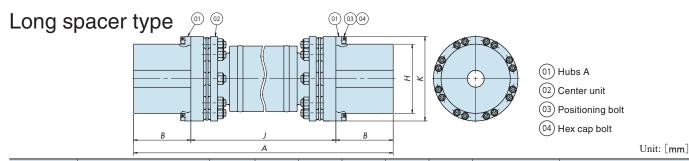
	F		Bore diameter [mm]																			
Model No.	dimension	25	31		40	45	50		53	56		60			66	72	76	79	83		86	89
	[mm]	to	to	39	to	to	to	52	to	to	59	to	64	65	to	to	to	to	to	85	to	to
	E	30	38		44	49	51		55	58		63			71	75	78	82	84		88	90
NER59	25	M6	M8	M10	M10	M12	M12	M10	M10	M8	M8	M6	M5	M5								
NER93	30				M10	M12	M12	M12	M12	M12	M16	M16	M16	M12	M12	M10	M8	M6	M5	M4		
NER230	35						M12	M12	M12	M12	M16	M16	M16	M16	M16	M16	M12	M12	M10	M10	M10	M8

Ī		F		Bore diameter [mm]											
	Model No.	dimension	60	76	80	86	97	100	103	106	111	121	126	130	140
		[mm]	to 75	to 79	to 85	to 96	to 99	to 102	to 105	to 110	to 120	to 125	to 129	to 139	to 145
	NER360	40	M16	M20	M20	M16	M12	M12	M10						
	NER630	50			M20	M20	M20	M20	M20	M20	M16	M12			
	NER850	60						M20	M20	M20	M20	M20	M20	M16	M12


ECHT-FLEX® Couplings

Transmission Capacity

	Allowable	Maximum	Pilot bore	Keyway	Shaft-direction	Allowable misalignment						
Model No.	torque	rotation speed	diameter	maximum bore diameter	spring constant	Angular mis- alignment	Parallel	misalignment [mm]	End play			
NIED 5014	[N·m]	speed [min ⁻¹]	[mm]	[mm]	[N/mm]	θ [deg]	Spacer type	Long spacer type	[mm]			
NER59W	590	14900	20	65	350	1.4	0.7	$(J-44.4) \times \tan^{\frac{1}{2}} \theta$	±1.4			
NER93W	930	12500	20	85	380	1.4	0.9	$(J-50.6) \times \tan^{\frac{1}{2}} \theta$	±1.4			
NER230W	2300	11500	25	90	1020	1.0	0.7	$(J-58.8) \times \tan^{\frac{1}{2}} \theta$	±1.0			
NER360W	3600	9700	30	105	585	1.0	0.9	$(J-70.0) \times \tan^{\frac{1}{2}} \theta$	±1.2			
NER630W	6300	8000	35	125	945	1.0	0.9	$(J-76.4) \times \tan^{\frac{1}{2}} \theta$	±1.6			
NER850W	8500	7300	40	145	975	1.0	1.0	(<i>J</i> -86.6)×tan½ θ	±1.8			


Dimensions

Spacer type

Unit: [mm]

							ome. [mm]
Model No.	Overall length A	Hub length B	Inter-flange distance J	Boss diameter H	Outer diameter K	Weight [kg]	Moment of inertia [kg·m²]
NER59W	240	70	100	84	108	6.2	0.010
NER93W	297	85	127	105	129	10.6	0.026
NER230W	330	95	140	117	140	15.6	0.045
NER360W	410	115	180	137	166	26.1	0.105
NER630W	450	135	180	163	199	40.2	0.240
NER850W	500	150	200	184	220	53.5	0.400

	26 1 127	т	.t Causa distance	Pilot bore	Keyway	Overall	Hub	Boss	Outer	Weight spe	ecifications	Moment of inert	ia specifications
	Model No.	11	nter-flange distance J	diameter	maximum bore diameter	length A	length B	diameter H	diameter K	W ₁	Wk [kg]	G_1 [kg·m 2]	Gk
	NER59W	J	Up to 6000	20	65		70	84	108	6.31	6.15	0.00649	0.0101
	. 12110777	JS	127, 140, 180, 200				, ,	-	100	0.01	0.10	0.00047	
	NER93W	J	Up to 6000	20	85		85	105	129	9.25	9.87	0.0131	0.0247
	INEK75VV	JS	140, 180, 200	20	65		65	105	127	7.23	7.07	0.0131	0.0247
	NIED 220W/	J	Up to 6000	25	90		95	117	1.40	1 / 1	21.0	0.0522	0.0407
	NER230W	JS	180, 200	25	90	2B+J	95	117	140	16.1	31.9	0.0523	0.0407
Ī	NIEDO (OM)	J	Up to 6000	20	105		115	107	1//	10 /	05.0	0.0740	0.0000
	NER360W	JS	200	30	105		115	137	166	18.6	25.8	0.0742	0.0983
	NER630W	J	Up to 6000	35	125		135	163	199	35.5	35.8	0.185	0.208
	NER850W	J	Up to 6000	40	145		150	184	220	35.5	46.3	0.185	0.353

The long spacer type approximate weight and moment of inertia are calculated using the following formula (when using the maximum bore diameter):

Weight [kg] = $(W_1/1000) \times J + Wk$ Moment of inertia $[kg \cdot m^2] = (G_1/1000) \times J + Gk$

J: The constants in the table above are used for J (Inter-flange distance [mm]), W_1 , W_2 , W_3 , W_4 , W_5 , W_6 , and W_7

Notes 1. Long spacer types are made-to-order products.

- 2. Specify the J dimension (Inter-flange distance) when ordering.
- 3. Balance adjustment may be needed for high-speed use or an excessively long J dimension. A hazard speed check is also needed. See Table 3 on page 19.

Product Selection

1. Correction torque calculation

1-1. When driven by servomotor

Calculate the correction torque by multiplying the servomotor's maximum torque by the service factor (SF) shown in Table 1 for the load type.

1-2. When driven by induction motor

Calculate the correction torque by multiplying the load torque calculated using the formula below by the service factor (SF) shown in Table 2 for the load type.

$$T = \frac{60000 \times P}{2\pi \times n} \left\{ T = \frac{974 \times P}{n} \right\}$$

 $T'=T\times SF$

T = Load torque $N \cdot m \{kgf \cdot m\}$

P = Transmitted power kW $n = Rotation speed min^{-1}$

 $T' = Correction torque \quad N \cdot m \{kgf \cdot m\}$

Table 1. Service factor (SF) when connected to servomotor

Load type	Uniform load	Moderately variable load	Highly variable load		
Service factor (SF)	1.2	1.4	1.5		

Table 2. Service factor (SF) when connected to generalpurpose motor

p an p a a a a a a			Motor type					
Load type	General nurnose	motor, gas turbine	Engine					
	Small moment of inertia	Large moment of inertia	Four cylinders	Six cylinders	Eight cylinders			
Uniform load	1.5 to 1.75	1.75 to 2.0	2.5 to 4.0	2.0 to 2.5	1.5 to 2.0			
Moderately variable load	2.0 to 2.5	2.5 to 3.0	4.0 to 5.0	2.5 to 3.5	2.0 to 3.0			
Highly variable load	3.0 to 4.5	4.5 to 6.0	4.5 to 5.5	3.0 to 4.0	2.5 to 3.5			

* If shock loads will be applied, calculate the correction torque by multiplying the motor's maximum output torque by a shock factor of 1 to 2.5.

2. Shaft diameter

Check that the shafts to be mounted are within the coupling's range of mountable shaft diameters.

3. Long spacer type rotation limit

When long spacer types are used at high speeds, the rotation speed needs to be checked to avoid the resonance point.

When selecting long spacer types, check each J dimension and whether its rotation speed is within the limit.

If the operating rotation speed exceeds the value shown below, a larger size must be selected.

If the operation speed is not in the ranges shown below, please contact us.

Table 3. Long spacer length (J dimension) limits

Unit: [mm]

Operating rotation speed [min ⁻¹] Model No.	3600	2000	1800	1500	1200	1000	900	750	720	600	500	400	300	200	150
NER59W	1470	1960	2070	2260	2520	2750	2900	3170	3240	3540	3870	4330	4990		
NER93W	1600	2130	2240	2450	2730	2980	3140	3440	3510	3840	4200	4690	5400		
NER230W	1930	2560	2700	2950	3290	3590	3790	4140	4220	4620	5060	5650			
NER360W	2080	2760	2910	3180	3540	3870	4080	4460	4550	4980	5440				
NER630W	2230	2960	3110	3400	3790	4140	4360	4770	4870	5330					
NER850W	2240	2970	3120	3410	3800	4160	4380	4780	4880	5340					

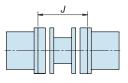
ECHT-FLEX® Couplings

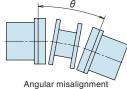
Handling

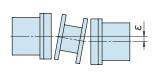
This section describes the general handling procedures used for NER Series ECHT-FLEX Couplings. For more information, see the instruction manual provided with the product.

1. Installing hubs to the shafts

Cautions


- 1. Check the coupling components against the list of components in the instruction manual.
- 2. The center unit has been optimally assembled at the factory. Use it as-is, without disassembling it.
- 3. Do not subject the center unit to large forces, especially in the shaft direction. It may cause the disks in a bent state, and damage the disks.


Installing procedure


- (1) Check that the drive shaft, driven shaft and hub bores are free from burrs, scratches, dirt and rust. Wipe off any dirt or oil.
- (2) Mount the hubs to the shafts. If bore is for tight fit, heat the hub uniformly with heated oil (of 150°C or less) to quickly mount it at the proper position on the shaft.
- (3) The distance between the hub flange faces is given in Item (1) of Section 2 below.

2. Centerina

The more accurate the initial centering of the coupling, the less eccentric rotational stress it will experience during operation. Changes during operation caused by factors such as bearing wear, mounting surface subsidence, temperature-induced state changes, and vibrations can reduce the life of the coupling or your equipment. Periodically center the coupling using the procedure below.

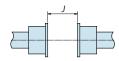
Distance between flange faces

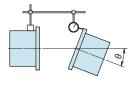
Parallel misalignment

The error in the distance between the coupling's flange faces, the allowable angular misalignment, and the parallel misalignment are all related to each other. Increasing one factor decreases the others, so the factors need to be considered together. Perform the initial centering procedure precisely, to within the recommended centering values below.

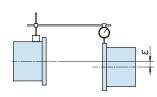
(1) Adjusting the distance between the flange faces (J)

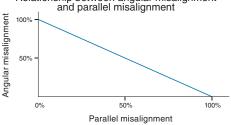
Measure the overall length of the center unit, and use this value as the J dimension. (The center unit's overall length may be longer or shorter than the reference value depending on the combination of part tolerances. In this case, it may be difficult to attach the center unit even when the hubs are set within $J \pm 0.5$ mm in the drawing reference dimensions.) Measure the J dimension at four places every 90 degrees, and adjust the hub positions so that the average of these measurements is within J \pm 0.5 mm. If the drive shaft or driven shaft is a stepped shaft, the adjustment margin may be restricted, so take steps to enable the J dimension to be adjusted beforehand.


(2) Adjusting the angular misalignment (θ)


- (a) Fasten a dial gauge to one of the hubs as shown in the diagram. Rotate the hub to find the minimum reading on the dial gauge, and zero the gauge at that point.
- (b) Rotate the hub on the dial gauge side by 360 degrees, and read the angular misalignment value.
- (c) Adjust the equipment by moving it with a shim so that the reading on the dial gauge comes within the recommended angular misalignment range specified in Table 1.

- (a) Attach a dial gauge to a hub flange as shown in the diagram. Rotate that hub to find the minimum reading on the dial gauge, and zero the gauge at that
- (b) Rotate the hub attached to the dial gauge by 360 degrees, and read the parallel misalignment value.
- (c) The reading on the dial gauge around the periphery of the hub may fluctuate abnormally at the hub's drilled bore because the flange expanded toward the periphery when the drilled bore was machined. Avoid these locations when reading the dial gauge.
- (d) Adjust the equipment by moving it with a shim so that the reading on the dial gauge comes within twice the recommended parallel misalignment range specified in Table 1 or Table 2.
- (e) If the equipment was moved to adjust the parallel alignment, readjust the angular alignment.




Table 1 Recommended centering values (standard spacers)

	Recommended centering values									
Model No.	ngular mis	salignment	Parallel misalignment	Distance between						
	θ	T.I.R.	E [mm]	flange faces						
l	[deg]	[mm]		J [mm]						
NER59W).35°	0.33	0.18	±0.5						
NER93W	0.35°	0.39	0.22	±0.5						
NER230W).25°	0.31	0.18	±0.5						
NER360W).25°	0.36	0.22	±0.5						
NER630W).25°	0.43	0.22	±0.5						
NER850W	0.25°	0.48	0.25	±0.5						

Table 2 Recommended centering values (long spacers)

		Recom	mended centering va	lues
Model No.	Angular mi	salignment	Parallel misalignment	Distance between
Wodel Ivo.	θ [deg]	T.I.R. [mm]	(formula) & [mm]	flange faces J [mm]
NER59W	0.35°	0.33	(J-27.4)×0.31×10 ⁻²	±0.5
NER93W	0.35°	0.39	(J-30.6)×0.31×10 ⁻²	±0.5
NER230W	0.25°	0.31	(J-35.8)×0.22×10 ⁻²	±0.5
NER360W	0.25°	0.36	(J-43)×0.22×10 ⁻²	±0.5
NER630W	0.25°	0.43	(J-46.4)×0.22×10 ⁻²	±0.5
NER850W	0.25°	0.48	(J-52.6)×0.22×10 ⁻²	±0.5

Relationship between angular misalignment and parallel misalignment

Handling

3. Installing center unit

(1) Mount the center unit to the hubs after referring to the component drawing in the instruction manual.

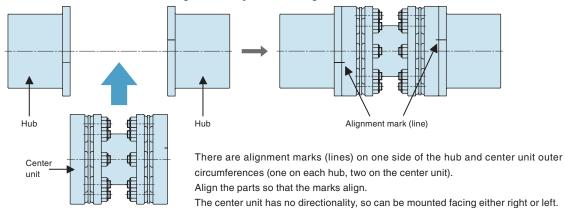


Figure 1. Installing center unit

(2) Fasten the hubs and center unit using the positioning bolts and hex socket head bolts.

When fastening the hubs and center unit, insert the positioning bolts (with green heads) into the drilled holes at the alignment marks (lines). The positioning bolts will not fit into other drilled holes. There are two positioning bolts (with green heads) on each side, located 180 degrees apart. (There are a total of four positioning bolts per coupling.)

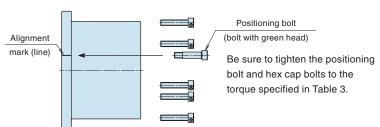
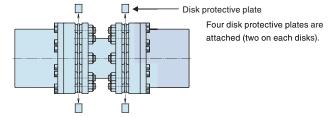



Figure 2. Positioning bolt and hex cap bolt insertion

Table 3. Positioning bolt and hex cap bolt tightening torques

Model No.	Bolt size	Tightening torque [N•m]
NER59W	M6	14
NER93W	M6	14
NER230W	M6	14
NER360W	M8	34
NER630W	M10	67
NER850W	M10	67

(3) When you have assembled the coupling, remove the disk protective plates on the disks.

4. Inspection

Re-check the angular misalignment and parallel misalignment one or two hours after starting actual operation.

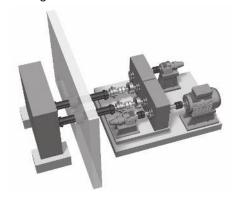
After the check, refasten the positioning bolts and hex socket head bolts to the torque specified in Table 3.

Also check for problem parts or looseness in the positioning bolts and hex sock head bolts every 6 months to one year.

After installing the equipment, marking the positioning bolts, hex socket head bolts and hubs to enable checks for looseness is recommended. Also check for problems in other parts.

NER Series ECHT-FLEX® Couplings CFRP Spacer Type

By adopting carbon-fiber-reinforced plastic (CFRP) as a spacer material, the NER series CFRP spacer type features outstanding lightness and corrosion resistance in addition to its intrinsic characteristics.

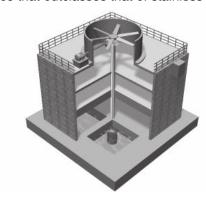

This polymer features the same level of strength as steel while being lightweight and highly corrosion-resistant, making it applicable for a wide range of products, including aircraft and automobiles.

Application Examples

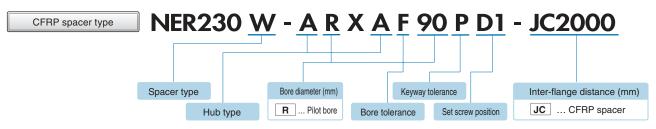
Vehicle testers

Significantly lighter weight

CFRP spacers substantially reduce the weight. The lighter weight improves transportability, installation, and mounting.



Industrial cooling towers


Outstanding corrosion resistance

The NER series CFRP spacer type can be used in environments corrosive.

Under certain conditions, it can provide corrosion resistance that outclasses that of stainless steel.

Model Number

See the model number indication on page 17 for more information.

The CFRP spacer type is made-to-ordered product.
For more information on specifications and availability, please contact us.

Innovation in Motion TSUBAKI

PT. MASA JAYA PERKASA

info@masajayaperkasa.com

Jl. Hayam Wuruk No. 76, **Jakarta Barat, DKI Jakarta 11160**

(+62)21-649-6496

(+62)852-1116-7713